Advertisement

Physiologically Based Pharmacokinetic Modeling of 3 HIV Drugs in Combination and the Role of Lymphatic System after Subcutaneous Dosing. Part 1: Model for the Free-Drug Mixture

Published:October 18, 2021DOI:https://doi.org/10.1016/j.xphs.2021.10.007

      Abstract

      Drug-combination nanoparticles (DcNP) allow the formulation of multiple HIV drugs in one injectable. In nonhuman primates (NHP), all drugs in DcNP have demonstrated long-acting pharmacokinetics (PK) in the blood and lymph nodes, rendering it suitable for a Targeted Long-acting Antiretroviral Therapy (TLC-ART). To support the translation of TLC-ART into the clinic, the objective is to present a physiologically based PK (PBPK) model tool to control mechanisms affecting the rather complex DcNP-drug PK. Two species contribute simultaneously to the drug PK: drugs that dissociate from DcNP (Part 1) and drugs retained in DcNP (Part 2, presented separately). Here, we describe the PBPK modeling of the nanoparticle-free drugs. The free-drug model was built on subcutaneous injections of suspended lopinavir, ritonavir, and tenofovir in NHP, and validated by external experiments. A novelty was the design of a lymphatic network as part of a whole-body PBPK system which included major lymphatic regions: the cervical, axillary, hilar, mesenteric, and inguinal nodes. This detailed/regionalized description of the lymphatic system and mononuclear cells represents an unprecedented level of prediction that renders the free-drug model extendible to other small-drug molecules targeting the lymphatic system at both the regional and cellular levels.

      Keywords

      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Fletcher C.V.
        • Staskus K.
        • Wietgrefe S.W.
        • et al.
        Persistent HIV-1 replication is associated with lower antiretroviral drug concentrations in lymphatic tissues.
        Proc Natl Acad Sci U S A. 2014; 111: 2307-2312
        • Lorenzo-Redondo R.
        • Fryer H.R.
        • Bedford T.
        • et al.
        Persistent HIV-1 replication maintains the tissue reservoir during therapy.
        Nature. 2016; 530: 51-56
        • Schacker T.
        The role of secondary lymphatic tissue in immune deficiency of HIV infection.
        AIDS. 2008; 22: S13-S18
        • Pantaleo G.
        • Graziosi C.
        • Demarest J.F.
        • et al.
        HIV infection is active and progressive in lymphoid tissue during the clinically latent stage of disease.
        Nature. 1993; 362: 355-358
        • Kraft J.C.
        • McConnachie L.A.
        • Koehn J.
        • et al.
        Long-acting combination anti-HIV drug suspension enhances and sustains higher drug levels in lymph node cells than in blood cells and plasma.
        AIDS. 2017; 31: 765-770
        • Perazzolo S.
        • Shireman L.M.
        • McConnachie L.A.
        • et al.
        Integration of computational and experimental approaches to elucidate mechanisms of first-pass lymphatic drug sequestration and long-acting pharmacokinetics of the injectable triple-HIV drug combination TLC-ART 101.
        JPharmSci. 2020; 109: 1789-1801
        • Ganusov V.V.
        • Auerbach J.
        Mathematical modeling reveals kinetics of lymphocyte recirculation in the whole organism.
        PLoS Comput Biol. 2014; 10e1003586
        • Dahlberg A.M.
        • Kaminskas L.M.
        • Smith A.
        • et al.
        The lymphatic system plays a major role in the intravenous and subcutaneous pharmacokinetics of trastuzumab in rats.
        Mol Pharm. 2014; 11: 496-504
        • Kraft J.C.
        • McConnachie L.A.
        • Koehn J.
        • et al.
        Mechanism-based pharmacokinetic (MBPK) models describe the complex plasma kinetics of three antiretrovirals delivered by a long-acting anti-HIV drug combination nanoparticle formulation.
        J Controll Rel. 2018; 275: 229-241
        • Freeling J.P.
        • Koehn J.
        • Shu C.
        • Sun J.
        • Ho R.J.Y.
        Anti-HIV drug-combination nanoparticles enhance plasma drug exposure duration as well as triple-drug combination levels in cells within lymph nodes and blood in primates.
        AIDS Res Hum Retroviruses. 2015; 31: 107-114
        • Perazzolo S.
        • Shireman L.M.
        • Koehn J.
        • et al.
        Three HIV drugs, atazanavir, ritonavir, and tenofovir, coformulated in drug-combination nanoparticles exhibit long-acting and lymphocyte-targeting properties in nonhuman primates.
        JPharmSci. 2018; 107: 3153-3162
        • Koehn J.
        • Ho R.J.Y.
        Novel liquid chromatography-tandem mass spectrometry method for simultaneous detection of anti-HIV drugs Lopinavir, Ritonavir, and Tenofovir in plasma.
        Antimicrob Agents Chemother. 2014; 58: 2675-2680
        • van Marle G
        • DL Church
        • der Meer F van
        • Gill M.J
        Combating the HIV reservoirs.
        Biotechnol Genet Eng Rev. 2018; 34: 76-89
        • Ohtani O.
        • Ohtani Y.
        Lymph circulation in the liver.
        Anat Rec. 2008; 291: 643-652
        • Russell P.S.
        • Hong J.
        • Windsor J.A.
        • Itkin M.
        • Phillips A.R.J.
        Renal lymphatics: anatomy, physiology, and clinical implications.
        Front Physiol. 2019; 10: 251
        • Hayakawa T.
        The lymphatics of Japanese macaque.
        Anthropol Sci. 1994; 102: 165-179
        • Gill K.L.
        • Gardner I.
        • Li L.
        • Jamei M.
        A bottom-up whole-body physiologically based pharmacokinetic model to mechanistically predict tissue distribution and the rate of subcutaneous absorption of therapeutic proteins.
        AAPS J. 2016; 18: 156-170
        • Moriyama A.
        • Fujishima J.
        • Furukawa T.
        • et al.
        Quantitative analyses of lymphoid tissue in the spleen, lymph nodes and peyer's patches in cynomolgus monkeys.
        J Vet Med Sci. 2011; 73: 1459-1464
        • Som P.M.
        Lymph nodes of the neck.
        Radiology. 1987; 165: 593-600
        • Van Beekhuizen H.J.
        • Auzin M.
        • Van den Einden L.C.G.
        • et al.
        Lymph node count at inguinofemoral lymphadenectomy and groin recurrences in vulvar cancer.
        Int J Gynecol Cancer. 2014; 24: 773-778
        • Kelch I.D.
        • Bogle G.
        • Sands G.B.
        • Phillips A.R.J.
        • LeGrice I.J.
        • Dunbar P.R.
        High-resolution 3D imaging and topological mapping of the lymph node conduit system.
        PLoS Biol. 2019; 17: e3000486
        • Desai P.
        • Williams A.G.
        • Prajapati P.
        • Downey H.F.
        Lymph flow in instrumented dogs varies with exercise intensity.
        Lymphat Res Biol. 2010; 8: 143-148
        • Kumar G.N.
        • Dykstra J.
        • Roberts E.M.
        • et al.
        Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: a positive drug-drug interaction.
        Drug Metab Dispos. 1999; 27: 902-908
        • Kumar G.N.
        • Jayanti V.
        • Lee R.D.
        • et al.
        In vitro metabolism of the HIV-1 protease inhibitor ABT-378: species comparison and metabolite identification.
        Drug Metab Dispos. 1999; 27: 86-91
        • Kempf D.J.
        • Marsh K.C.
        • Denissen J.F.
        • et al.
        ABT-538 is a potent inhibitor of human immunodeficiency virus protease and has high oral bioavailability in humans.
        Proc Natl Acad Sci U S A. 1995; 92: 2484-2488
        • Kumar G.N.
        • Jayanti V.K.
        • Johnson M.K.
        • et al.
        Metabolism and disposition of the HIV-1 protease inhibitor lopinavir (ABT-378) given in combination with ritonavir in rats, dogs, and humans.
        Pharm Res. 2004; 21: 1622-1630
        • Rock B.M.
        • Hengel S.M.
        • Rock D.A.
        • Wienkers L.C.
        • Kunze K.L.
        Characterization of ritonavir-mediated inactivation of cytochrome P450 3A4.
        Mol Pharmacol. 2014; 86: 665-674
        • Kirby B.J.
        • Collier A.C.
        • Kharasch E.D.
        • Whittington D.
        • Thummel K.E.
        • Unadkat J.D.
        Complex drug interactions of HIV protease inhibitors 1: inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir.
        Drug Metab Dispos. 2011; 39: 1070-1078
      1. AbbiVie. NDA - Clinical Pharmacology and Biopharmaceutical Review of Kaletra. Silver Spring, MD: Food and Drug Administration. Available at: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2000/21-226_Kaletra_biopharmr_P1.pdf. Accessed October 7, 2020.

        • Gilead Sciences
        Drug Approval Package: VIREAD (Tenofovir Disoproxil Fumarate) Tablets.
        Food and Drug Administration, Silver Spring, MD2001
        • Deeks S.G.
        • Barditch-Crovo P.
        • Lietman P.S.
        • et al.
        Safety, pharmacokinetics, and antiretroviral activity of intravenous 9-[2-(R)-(Phosphonomethoxy)propyl]adenine, a novel anti-human immunodeficiency virus (HIV) therapy, in HIV-infected adults.
        Antimicrob Agents Chemother. 1998; 42: 2380-2384
        • Liu S.N.
        • Desta Z.
        • Gufford B.T.
        Probenecid-boosted tenofovir: a physiologically-based pharmacokinetic model-informed strategy for on-demand HIV preexposure prophylaxis.
        CPT Pharmacometr Syst Pharmacol. 2020; 9: 40-47
        • Gilead Sciences
        Drug Approval Package: COMPLERA (emtricitabine, rilpivirine, Tenofovir Disoproxil fumarate) Tablets.
        Pharmaceuticals and Medical Devices Agency, Tokyo, Japan2011 (Available at:)
        • Myrhage R.
        • Hudlická O.
        The microvascular bed and capillary surface area in rat extensor hallucis proprius muscle (EHP).
        Microvasc Res. 1976; 11: 315-323
        • Robbins B.L.
        • Srinivas R.V.
        • Kim C.
        • Bischofberger N.
        • Fridland A.
        Anti-human immunodeficiency virus activity and cellular metabolism of a potential prodrug of the acyclic nucleoside phosphonate 9-R-(2-phosphonomethoxypropyl)adenine (PMPA), Bis(isopropyloxymethylcarbonyl)PMPA.
        Antimicrob Agents Chemother. 1998; 42: 612-617
        • Dixit N.M.
        • Perelson A.S.
        Complex patterns of viral load decay under antiretroviral therapy: influence of pharmacokinetics and intracellular delay.
        J Theor Biol. 2004; 226: 95-109
        • Di Mascio M.
        • Srinivasula S.
        • Bhattacharjee A.
        • et al.
        Antiretroviral tissue kinetics: in vivo imaging using positron emission tomography.
        Antimicrob. Agents Chemother. 2009; 53: 4086-4095
        • Choi K.
        • Chang J.
        • Lee M.-.J.
        • et al.
        Reference values of hematology, biochemistry, and blood type in cynomolgus monkeys from cambodia origin.
        Lab Anim Res. 2016; 32: 46-55
        • Denissen J.F.
        • Grabowski B.A.
        • Johnson M.K.
        • et al.
        Metabolism And Disposition of the HIV-1 Protease Inhibitor Ritonavir (ABT-538) in Rats, Dogs, and Humans.
        Drug Metab Dispos. 1997; 25 (489-489)
        • Ibrahim R.
        • Nitsche J.M.
        • Kasting G.B.
        Dermal clearance model for epidermal bioavailability calculations.
        J Pharm Sci. 2012; 101: 2094-2108
        • Janneh O.
        • Bray P.G.
        • Jones E.
        • et al.
        Concentration-dependent effects and intracellular accumulation of HIV protease inhibitors in cultured CD4 T cells and primary human lymphocytes.
        J Antimicrob Chemother. 2010; 65: 906-916
        • Crommentuyn K.M.L.
        • Mulder J.W.
        • Mairuhu A.T.A.
        • et al.
        The plasma and intracellular steady-state pharmacokinetics of lopinavir/ritonavir in HIV-1-infected patients.
        Antivir Ther (Lond). 2004; 9: 779-785
        • Anderson P.L.
        • Kiser J.J.
        • Gardner E.M.
        • Rower J.E.
        • Meditz A.
        • Grant R.M.
        Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection.
        J Antimicrob Chemother. 2011; 66: 240-250
        • Durand-Gasselin L.
        • Van Rompay K.K.A.
        • Vela J.E.
        • et al.
        Nucleotide analog prodrug, tenofovir disoproxil, enhances lymphoid cell loading following oral administration in monkeys.
        Mol Pharm. 2009; 6: 1145-1151
        • Burgunder E.
        • Fallon J.K.
        • White N.
        • et al.
        Antiretroviral Drug concentrations in lymph nodes: a cross-species comparison of the effect of drug transporter expression, viral infection, and sex in humanized mice, nonhuman primates, and humans.
        J Pharmacol Exp Ther. 2019; 370: 360-368
        • Van Rompay K.K.A.
        • Hamilton M.
        • Kearney B.
        • Bischofberger N.
        Pharmacokinetics of tenofovir in breast milk of lactating rhesus macaques.
        Antimicrob Agents Chemother. 2005; 49: 2093-2094
        • Abdallah M.
        • Müllertz O.O.
        • Styles I.K.
        • et al.
        Lymphatic targeting by albumin-hitchhiking: applications and optimisation.
        J Control Release. 2020; 327: 117-128
        • Rompay K.K.A.V.
        • Babusis D.
        • Abbott Z.
        • et al.
        Compared to subcutaneous tenofovir, oral tenofovir disoproxyl fumarate administration preferentially concentrates the drug into gut-associated lymphoid cells in simian immunodeficiency virus-infected macaques.
        Antimicrob. Agents Chemother. 2012; 56: 4980-4984
        • Supersaxo A.
        • Hein W.R.
        • Steffen H.
        Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration.
        Pharm. Res. 1990; 7: 167-169
        • Yu J.
        • Mu Q.
        • Perazzolo S.
        • et al.
        Novel long-acting drug combination nanoparticles composed of gemcitabine and paclitaxel enhance localization of both drugs in metastatic breast cancer nodules.
        Pharm. Res. 2020; 37: 197
        • Perazzolo S.
        • Mandal S.
        • Prathipati P.K.
        • Destache C.J.
        Bictegravir plus tenofovir alafenamide nanoformulation as a long-acting pre-exposure prophylaxis regimen: application of modeling to design non-human primate pharmacokinetic experiments.
        Front Pharmacol. 2020; 11: 2163
        • Perazzolo S.
        • Zhu L.
        • Lin W.
        • Nguyen A.
        • Ho R.J.Y.
        Systems and clinical pharmacology of COVID-19 therapeutic candidates: a clinical and translational medicine perspective.
        J Pharm Sci. 2021; 110: 1002-1017