Advertisement
RESEARCH ARTICLE – Pharmacokinetics, Pharmacodynamics and Drug Transport and Metabolism| Volume 104, ISSUE 9, P3039-3048, September 01, 2015

Quantitative Analysis of the ABCG2 c.421C>A Polymorphism Effect on In Vivo Transport Activity of Breast Cancer Resistance Protein (BCRP) Using an Intestinal Absorption Model

      ABSTRACT:

      ABCG2 c.421C>A is one of the most frequent polymorphisms in ABCG2, which encodes the breast cancer resistance protein (BCRP). Clinical pharmacogenetic studies have shown that the plasma area under the concentration–time curve (AUC) values after oral administration of BCRP substrate drugs are significantly higher in subjects homozygous for the c.421C>A polymorphism (421AA) than in wild-type subjects (421CC). The aim of this study was to quantitatively estimate the in vivo decrease of BCRP function caused by the c.421C>A polymorphism based on clinical pharmacokinetic data. Assuming that the pharmacokinetic alteration is accounted for by intestinal BCRP, the ratio of the transport activity of the mutated BCRP to that of the wild-type was optimized by comparing calculations from an intestinal absorption model and clinical pharmacokinetic data. In conclusion, the in vivo intestinal BCRP transport activity in 421AA subjects is estimated to be approximately 23% of that in the 421CC subjects. © 2015 Wiley Periodicals, Inc. and the AmericanPharmacists Association J Pharm Sci 104:3039–3048, 2015

      Keywords

      To read this article in full you will need to make a payment
      APhA Member Login
      APhA Members, full access to the journal is a member benefit. Use your society credentials to access all journal content and features.
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Purchase one-time access:

      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      REFERENCES

        • Kage K.
        • Tsukahara S.
        • Sugiyama T.
        • Asada S.
        • Ishikawa E.
        • Tsuruo T.
        • Sugimoto Y.
        Dominant-negative inhibition of breast cancer resistance protein as drug efflux pump through the inhibition of S-S dependent homodimerization.
        Int J Cancer. 2002; 97: 626-630
        • Ieiri I.
        Functional significance of genetic polymorphisms in P-glycoprotein (MDR1, ABCB1) and breast cancer resistance protein (BCRP, ABCG2).
        Drug Metab Pharmacokinet. 2012; 27: 85-105
        • Ieiri I.
        • Higuchi S.
        • Sugiyama Y.
        Genetic polymorphisms of uptake (OATP1B1, 1B3) and efflux (MRP2, BCRP) transporters: Implications for inter-individual differences in the pharmacokinetics and pharmacodynamics of statins and other clinically relevant drugs.
        Expert Opin Drug Metab Toxicol. 2009; 5: 703-729
        • Giacomini K.M.
        • Huang S.M.
        • Tweedie D.J.
        • Benet L.Z.
        • Brouwer K.L.
        • Chu X.
        • Dahlin A.
        • Evers R.
        • Fischer V.
        • Hillgren K.M.
        • Hoffmaster K.A.
        • Ishikawa T.
        • Keppler D.
        • Kim R.B.
        • Lee C.A.
        • Niemi M.
        • Polli J.W.
        • Sugiyama Y.
        • Swaan P.W.
        • Ware J.A.
        • Wright S.H.
        • Yee S.W.
        • Zamek-Gliszczynski M.J.
        • Zhang L.
        Membrane transporters in drug development.
        Nat Rev Drug Discov. 2010; 9: 215-236
        • Yamasaki Y.
        • Ieiri I.
        • Kusuhara H.
        • Sasaki T.
        • Kimura M.
        • Tabuchi H.
        • Ando Y.
        • Irie S.
        • Ware J.
        • Nakai Y.
        • Higuchi S.
        • Sugiyama Y.
        Pharmacogenetic characterization of sulfasalazine disposition based on NAT2 and ABCG2 (BCRP) gene polymorphisms in humans.
        Clin Pharmacol Ther. 2008; 84: 95-103
        • Keskitalo J.E.
        • Pasanen M.K.
        • Neuvonen P.J.
        • Niemi M.
        Different effects of the ABCG2 c.421C>A SNP on the pharmacokinetics of fluvastatin, pravastatin and simvastatin.
        Pharmacogenomics. 2009; 10: 1617-1624
        • Keskitalo J.E.
        • Zolk O.
        • Fromm M.F.
        • Kurkinen K.J.
        • Neuvonen P.J.
        • Niemi M.
        ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin.
        Clin Pharmacol Ther. 2009; 86: 197-203
        • Tomlinson B.
        • Hu M.
        • Lee V.W.
        • Lui S.S.
        • Chu T.T.
        • Poon E.W.
        • Ko G.T.
        • Baum L.
        • Tam L.S.
        • Li E.K.
        ABCG2 polymorphism is associated with the low-density lipoprotein cholesterol response to rosuvastatin.
        Clin Pharmacol Ther. 2010; 87: 558-562
        • Cusatis G.
        • Gregorc V.
        • Li J.
        • Spreafico A.
        • Ingersoll R.G.
        • Verweij J.
        • Ludovini V.
        • Villa E.
        • Hidalgo M.
        • Sparreboom A.
        • Baker S.D.
        Pharmacogenetics of ABCG2 and adverse reactions to gefitinib.
        J Natl Cancer Inst. 2006; 98: 1739-1742
        • Kondo C.
        • Suzuki H.
        • Itoda M.
        • Ozawa S.
        • Sawada J.
        • Kobayashi D.
        • Ieiri I.
        • Mine K.
        • Ohtsubo K.
        • Sugiyama Y.
        Functional analysis of SNPs variants of BCRP/ABCG2.
        Pharm Res. 2004; 21: 1895-1903
        • Kobayashi D.
        • Ieiri I.
        • Hirota T.
        • Takane H.
        • Maegawa S.
        • Kigawa J.
        • Suzuki H.
        • Nanba E.
        • Oshimura M.
        • Terakawa N.
        • Otsubo K.
        • Mine K.
        • Sugiyama Y.
        Functional assessment of ABCG2 (BCRP) gene polymorphisms to protein expression in human placenta.
        Drug Metab Dispos. 2005; 33: 94-101
        • Prasad B.
        • Lai Y.
        • Lin Y.
        • Unadkat J.D.
        Interindividual variability in the hepatic expression of the human breast cancer resistance protein (BCRP/ABCG2): Effect of age, sex, and genotype.
        J Pharm Sci. 2013; 102: 787-793
        • Mizuarai S.
        • Aozasa N.
        • Kotani H.
        Single nucleotide polymorphisms result in impaired membrane localization and reduced atpase activity in multidrug transporter ABCG2.
        Int J Cancer. 2004; 109: 238-246
        • Morisaki K.
        • Robey R.W.
        • Ozvegy-Laczka C.
        • Honjo Y.
        • Polgar O.
        • Steadman K.
        • Sarkadi B.
        • Bates S.E.
        Single nucleotide polymorphisms modify the transporter activity of ABCG2.
        Cancer Chemother Pharmacol. 2005; 56: 161-172
        • Ito K.
        • Kusuhara H.
        • Sugiyama Y.
        Effects of intestinal CYP3A4 and P-glycoprotein on oral drug absorption–theoretical approach.
        Pharm Res. 1999; 16: 225-231
        • Urquhart B.L.
        • Ware J.A.
        • Tirona R.G.
        • Ho R.H.
        • Leake B.F.
        • Schwarz U.I.
        • Zaher H.
        • Palandra J.
        • Gregor J.C.
        • Dresser G.K.
        • Kim R.B.
        Breast cancer resistance protein (ABCG2) and drug disposition: Intestinal expression, polymorphisms and sulfasalazine as an in vivo probe.
        Pharmacogenet Genomics. 2008; 18: 439-448
        • DeSesso J.M.
        • Jacobson C.F.
        Anatomical and physiological parameters affecting gastrointestinal absorption in humans and rats.
        Food Chem Toxicol. 2001; 39: 209-228
        • Winiwarter S.
        • Bonham N.M.
        • Ax F.
        • Hallberg A.
        • Lennernas H.
        • Karlen A.
        Correlation of human jejunal permeability (in vivo) of drugs with experimentally and theoretically derived parameters. A multivariate data analysis approach.
        J Med Chem. 1998; 41: 4939-4949
        • Kadono K.
        • Akabane T.
        • Tabata K.
        • Gato K.
        • Terashita S.
        • Teramura T.
        Quantitative prediction of intestinal metabolism in humans from a simplified intestinal availability model and empirical scaling factor.
        Drug Metab Dispos. 2010; 38: 1230-1237
        • Zhu C.
        • Jiang L.
        • Chen T.M.
        • Hwang K.K.
        A comparative study of artificial membrane permeability assay for high throughput profiling of drug absorption potential.
        Eur J Med Chem. 2002; 37: 399-407
        • Hisaka A.
        • Sugiyama Y.
        Analysis of nonlinear and nonsteady state hepatic extraction with the dispersion model using the finite difference method.
        J Pharmacokinet Biopharm. 1998; 26: 495-519
        • Kim C.O.
        • Cho S.K.
        • Oh E.S.
        • Park M.S.
        • Chung J.Y.
        Influence of ABCC2, SLCO1B1, and ABCG2 polymorphisms on the pharmacokinetics of olmesartan.
        J Cardiovasc Pharmacol. 2012; 60: 49-54
        • Davies B.
        • Morris T.
        Physiological parameters in laboratory animals and humans.
        Pharm Res. 1993; 10: 1093-1095
        • Zhou Q.
        • Ruan Z.R.
        • Yuan H.
        • Xu D.H.
        • Zeng S.
        ABCB1 gene polymorphisms, ABCB1 haplotypes and ABCG2 c.421c>A are determinants of inter-subject variability in rosuvastatin pharmacokinetics.
        Pharmazie. 2013; 68: 129-134
        • Tomita Y.
        • Maeda K.
        • Sugiyama Y.
        Ethnic variability in the plasma exposures of OATP1B1 substrates such as HMG-CoA reductase inhibitors: A kinetic consideration of its mechanism.
        Clin Pharmacol Ther. 2013; 94: 37-51
        • Uchimura T.
        • Kato M.
        • Saito T.
        • Kinoshita H.
        Prediction of human blood-to-plasma drug concentration ratio.
        Biopharm Drug Dispos. 2010; 31: 286-297
        • Li J.
        • Volpe D.A.
        • Wang Y.
        • Zhang W.
        • Bode C.
        • Owen A.
        • Hidalgo I.J.
        Use of transporter knockdown Caco-2 cells to investigate the in vitro efflux of statin drugs.
        Drug Metab Dispos. 2011; 39: 1196-1202
        • Hirano M.
        • Maeda K.
        • Matsushima S.
        • Nozaki Y.
        • Kusuhara H.
        • Sugiyama Y.
        Involvement of BCRP (ABCG2) in the biliary excretion of pitavastatin.
        Mol Pharmacol. 2005; 68: 800-807
        • Matsushima S.
        • Maeda K.
        • Kondo C.
        • Hirano M.
        • Sasaki M.
        • Suzuki H.
        • Sugiyama Y.
        Identification of the hepatic efflux transporters of organic anions using double-transfected Madin-Darby canine kidney II cells expressing human organic anion-transporting polypeptide 1B1 (OATP1B1)/multidrug resistance-associated protein 2, OATP1B1/multidrug resistance 1, and OATP1B1/breast cancer resistance protein.
        J Pharmacol Exp Ther. 2005; 314: 1059-1067
        • Li J.
        • Cusatis G.
        • Brahmer J.
        • Sparreboom A.
        • Robey R.W.
        • Bates S.E.
        • Hidalgo M.
        • Baker S.D.
        Association of variant ABCG2 and the pharmacokinetics of epidermal growth factor receptor tyrosine kinase inhibitors in cancer patients.
        Cancer Biol Ther. 2007; 6: 432-438
        • Gardner E.R.
        • Burger H.
        • vanSchaik R.H.
        • vanOosterom A.T.
        • de Bruijn E.A.
        • Guetens G.
        • Prenen H.
        • de Jong F.A.
        • Baker S.D.
        • Bates S.E.
        • Figg W.D.
        • Verweij J.
        • Sparreboom A.
        • Nooter K.
        Association of enzyme and transporter genotypes with the pharmacokinetics of imatinib.
        Clin Pharmacol Ther. 2006; 80: 192-201
        • Kim H.S.
        • Sunwoo Y.E.
        • Ryu J.Y.
        • Kang H.J.
        • Jung H.E.
        • Song I.S.
        • Kim E.Y.
        • Shim J.C.
        • Shon J.H.
        • Shin J.G.
        The effect of ABCG2 V12M, Q141K and Q126X, known functional variants in vitro, on the disposition of lamivudine.
        Br J Clin Pharmacol. 2007; 64: 645-654
        • Merino G.
        • Jonker J.W.
        • Wagenaar E.
        • vanHerwaarden A.E.
        • Schinkel A.H.
        The breast cancer resistance protein (BCRP/ABCG2) affects pharmacokinetics, hepatobiliary excretion, and milk secretion of the antibiotic nitrofurantoin.
        Mol Pharmacol. 2005; 67: 1758-1764
        • Lilja J.J.
        • Kivisto K.T.
        • Neuvonen P.J.
        Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin.
        Clin Pharmacol Ther. 1999; 66: 118-127
        • Fukazawa I.
        • Uchida N.
        • Uchida E.
        • Yasuhara H.
        Effects of grapefruit juice on pharmacokinetics of atorvastatin and pravastatin in Japanese.
        Br J Clin Pharmacol. 2004; 57: 448-455
        • Ando H.
        • Tsuruoka S.
        • Yanagihara H.
        • Sugimoto K.
        • Miyata M.
        • Yamazoe Y.
        • Takamura T.
        • Kaneko S.
        • Fujimura A.
        Effects of grapefruit juice on the pharmacokinetics of pitavastatin and atorvastatin.
        Br J Clin Pharmacol. 2005; 60: 494-497
        • Zhou Q.
        • Ruan Z.R.
        • Yuan H.
        • Zeng S.
        CYP2C9*3(1075A>C), MDR1 G2677T/A and MDR1 C3435T are determinants of inter-subject variability in fluvastatin pharmacokinetics in healthy Chinese volunteers.
        Arzneimittelforschung. 2012; 62: 519-524
        • Mizuno T.
        • Fukudo M.
        • Terada T.
        • Kamba T.
        • Nakamura E.
        • Ogawa O.
        • Inui K.
        • Katsura T.
        Impact of genetic variation in breast cancer resistance protein (BCRP/ABCG2) on sunitinib pharmacokinetics.
        Drug Metab Pharmacokinet. 2012; 27: 631-639
        • Ieiri I.
        • Suwannakul S.
        • Maeda K.
        • Uchimaru H.
        • Hashimoto K.
        • Kimura M.
        • Fujino H.
        • Hirano M.
        • Kusuhara H.
        • Irie S.
        • Higuchi S.
        • Sugiyama Y.
        SLCO1B1 (OATP1B1, an uptake transporter) and ABCG2 (BCRP, an efflux transporter) variant alleles and pharmacokinetics of pitavastatin in healthy volunteers.
        Clin Pharmacol Ther. 2007; 82: 541-547
        • Ho R.H.
        • Choi L.
        • Lee W.
        • Mayo G.
        • Schwarz U.I.
        • Tirona R.G.
        • Bailey D.G.
        • Michael Stein C.
        • Kim R.B.
        Effect of drug transporter genotypes on pravastatin disposition in European- and African-American participants.
        Pharmacogenet Genomics. 2007; 17: 647-656
        • Rudin C.M.
        • Liu W.
        • Desai A.
        • Karrison T.
        • Jiang X.
        • Janisch L.
        • Das S.
        • Ramirez J.
        • Poonkuzhali B.
        • Schuetz E.
        • Fackenthal D.L.
        • Chen P.
        • Armstrong D.K.
        • Brahmer J.R.
        • Fleming G.F.
        • Vokes E.E.
        • Carducci M.A.
        • Ratain M.J.
        Pharmacogenomic and pharmacokinetic determinants of erlotinib toxicity.
        J Clin Oncol. 2008; 26: 1119-1127
        • Steeghs N.
        • Gelderblom H.
        • Wessels J.
        • Eskens F.A.
        • de Bont N.
        • Nortier J.W.
        • Guchelaar H.J.
        Pharmacogenetics of telatinib, a VEGFR-2 and VEGFR-3 tyrosine kinase inhibitor, used in patients with solid tumors.
        Invest New Drugs. 2011; 29: 137-143
        • Sparreboom A.
        • Gelderblom H.
        • Marsh S.
        • Ahluwalia R.
        • Obach R.
        • Principe P.
        • Twelves C.
        • Verweij J.
        • McLeod H.L.
        Diflomotecan pharmacokinetics in relation to ABCG2 421C>A genotype.
        Clin Pharmacol Ther. 2004; 76: 38-44
        • Adkison K.K.
        • Vaidya S.S.
        • Lee D.Y.
        • Koo S.H.
        • Li L.
        • Mehta A.A.
        • Gross A.S.
        • Polli J.W.
        • Lou Y.
        • Lee E.J.
        The ABCG2 C421A polymorphism does not affect oral nitrofurantoin pharmacokinetics in healthy Chinese male subjects.
        Br J Clin Pharmacol. 2008; 66: 233-239
        • Chen W.Q.
        • Shu Y.
        • Li Q.
        • Xu L.Y.
        • Roederer M.W.
        • Fan L.
        • Wu L.X.
        • He F.Z.
        • Luo J.Q.
        • Tan Z.R.
        • He Y.J.
        • Zhou H.H.
        • Chen X.
        • Zhang W.
        Polymorphism of ORM1 is associated with the pharmacokinetics of telmisartan.
        PLoS One. 2013; 8: e70341
        • Watanabe T.
        • Kusuhara H.
        • Maeda K.
        • Kanamaru H.
        • Saito Y.
        • Hu Z.
        • Sugiyama Y.
        Investigation of the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats and humans.
        Drug Metab Dispos. 2010; 38: 215-222
        • Tse F.L.
        • Jaffe J.M.
        • Troendle A.
        Pharmacokinetics of fluvastatin after single and multiple doses in normal volunteers.
        J Clin Pharmacol. 1992; 32: 630-638
        • Singhvi S.M.
        • Pan H.Y.
        • Morrison R.A.
        • Willard D.A.
        Disposition of pravastatin sodium, a tissue-selective HMG-CoA reductase inhibitor, in healthy subjects.
        Br J Clin Pharmacol. 1990; 29: 239-243
        • Martin P.D.
        • Warwick M.J.
        • Dane A.L.
        • Brindley C.
        • Short T.
        Absolute oral bioavailability of rosuvastatin in healthy white adult male volunteers.
        Clin Ther. 2003; 25: 2553-2563
        • Gertz M.
        • Harrison A.
        • Houston J.B.
        • Galetin A.
        Prediction of human intestinal first-pass metabolism of 25 CYP3A substrates from in vitro clearance and permeability data.
        Drug Metab Dispos. 2010; 38: 1147-1158
        • Li J.
        • Brahmer J.
        • Messersmith W.
        • Hidalgo M.
        • Baker S.D.
        Binding of gefitinib, an inhibitor of epidermal growth factor receptor-tyrosine kinase, to plasma proteins and blood cells: In vitro and in cancer patients.
        Invest New Drugs. 2006; 24: 291-297
        • Kretz O.
        • Weiss H.M.
        • Schumacher M.M.
        • Gross G.
        In vitro blood distribution and plasma protein binding of the tyrosine kinase inhibitor imatinib and its active metabolite, CGP74588, in rat, mouse, dog, monkey, healthy humans and patients with acute lymphatic leukaemia.
        Br J Clin Pharmacol. 2004; 58: 212-216
        • Johnson M.A.
        • Verpooten G.A.
        • Daniel M.J.
        • Plumb R.
        • Moss J.
        • VanCaesbroeck D.
        • De Broe M.E.
        Single dose pharmacokinetics of lamivudine in subjects with impaired renal function and the effect of haemodialysis.
        Br J Clin Pharmacol. 1998; 46: 21-27
        • van Leeuwen R.
        • Lange J.M.
        • Hussey E.K.
        • Donn K.H.
        • Hall S.T.
        • Harker A.J.
        • Jonker P.
        • Danner S.A.
        The safety and pharmacokinetics of a reverse transcriptase inhibitor, 3TC, in patients with HIV infection: A phase I study.
        AIDS. 1992; 6: 1471-1475
        • Hoener B.
        • Patterson S.E.
        Nitrofurantoin disposition.
        Clin Pharmacol Ther. 1981; 29: 808-816
        • Deguchi T.
        • Watanabe N.
        • Kurihara A.
        • Igeta K.
        • Ikenaga H.
        • Fusegawa K.
        • Suzuki N.
        • Murata S.
        • Hirouchi M.
        • Furuta Y.
        • Iwasaki M.
        • Okazaki O.
        • Izumi T.
        Human pharmacokinetic prediction of UDP-glucuronosyltransferase substrates with an animal scale-up approach.
        Drug Metab Dispos. 2011; 39: 820-829
        • Sparreboom A.
        • Loos W.J.
        • Burger H.
        • Sissung T.M.
        • Verweij J.
        • Figg W.D.
        • Nooter K.
        • Gelderblom H.
        Effect of ABCG2 genotype on the oral bioavailability of topotecan.
        Cancer Biol Ther. 2005; 4: 650-658
        • Lennernas H.
        • Nilsson D.
        • Aquilonius S.M.
        • Ahrenstedt O.
        • Knutson L.
        • Paalzow L.K.
        The effect of L-leucine on the absorption of levodopa, studied by regional jejunal perfusion in man.
        Br J Clin Pharmacol. 1993; 35: 243-250
        • Bolger M.B.
        • Lukacova V.
        • Woltosz W.S.
        Simulations of the non-linear dose dependence for substrates of influx and efflux transporters in the human intestine.
        AAPS J. 2009; 11: 353-363
        • Yu L.X.
        • Lipka E.
        • Crison J.R.
        • Amidon G.L.
        Transport approaches to the biopharmaceutical design of oral drug delivery systems: Prediction of intestinal absorption.
        Adv Drug Deliv Rev. 1996; 19: 359-376
        • Akasaka K.
        • Kaburagi T.
        • Yasuda S.
        • Ohmori K.
        • Abe K.
        • Sagara H.
        • Ueda Y.
        • Nagao K.
        • Imura J.
        • Imai Y.
        Impact of functional ABCG2 polymorphisms on the adverse effects of gefitinib in Japanese patients with non-small-cell lung cancer.
        Cancer Chemother Pharmacol. 2010; 66: 691-698
        • Tamura M.
        • Kondo M.
        • Horio M.
        • Ando M.
        • Saito H.
        • Yamamoto M.
        • Horio Y.
        • Hasegawa Y.
        Genetic polymorphisms of the adenosine triphosphate-binding cassette transporters (ABCG2, ABCB1) and gefitinib toxicity.
        Nagoya J Med Sci. 2012; 74: 133-140